

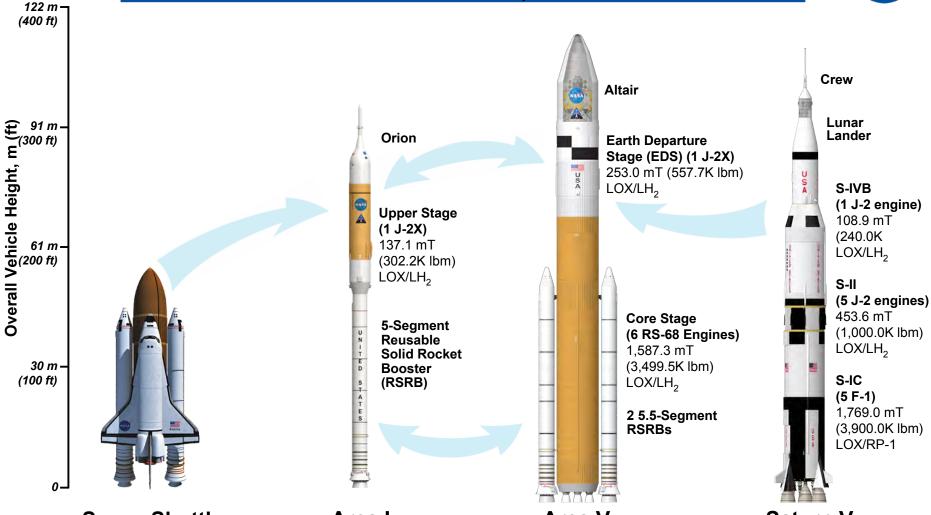
Lunar Program Industry Briefing: Ares V Overview

Steve Cook *Manager, Ares Projects Office*

Ares Projects Overview

- Deliver crew and cargo for missions to International Space Station (ISS), the Moon and beyond
- Continuing progress toward design, component testing, and early flight testing
- Ares I Crew Launch Vehicle
 - Carries 6 crew to ISS, 4 to Moon
 - First flight test scheduled in 2009
 - Initial Operational Capability in 2015
- Ares V Cargo Launch Vehicle
 - Launches Earth Departure Stage (EDS), Altair and Orion to Low Earth Orbit for lunar missions
 - Largest launch vehicle ever designed
 - Ongoing concept design work leading into detailed development work starting in 2011
 - First flight test planned in 2018

Ares V Cargo Launch Vehicle


- Key transportation system for exploration beyond Low Earth Orbit
 - Offers unique payload capabilities opening new doors to human exploration on the Moon and beyond
 - Designed for routine crew and cargo transportation to the Moon
 - EDS + Altair to LEO
 - EDS + Altair + Orion to TLI
 - Considered national asset creating new opportunities for science, national security and space business
 - Capable of transporting more than 71 metric tons to the Moon
 - Focal point for design and development located at MSFC with support across the Agency

Building on a Foundation of Proven Technologies

Launch Vehicle Comparisons

Space Shuttle

Height: 56.1 m (184.2 ft)
Gross Liftoff Mass:
2,041.1 mT (4,500.0K lbm)
Payload Capability:
25.0 mT (55.1K lbm) to
Low Earth Orbit (LEO)

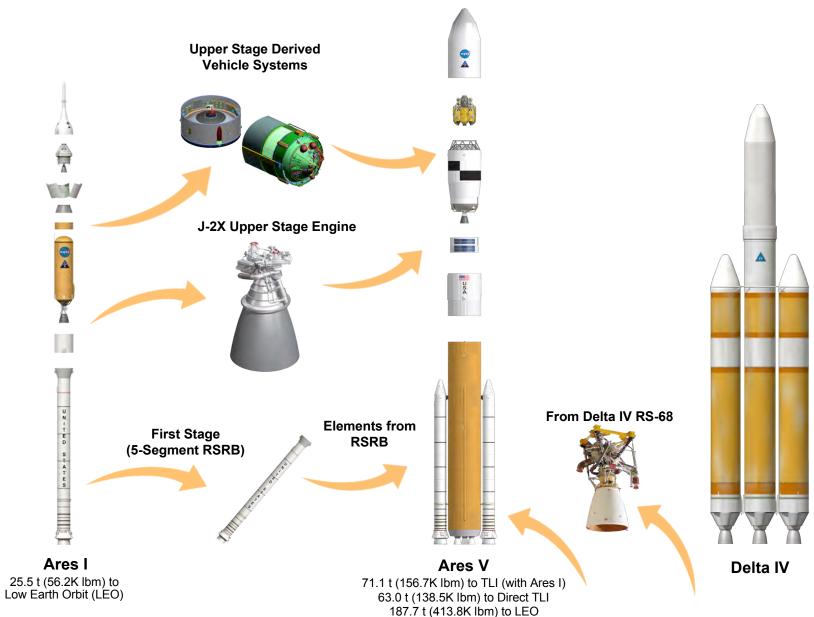
Ares I

Height: 99.1 m (325.0 ft) Gross Liftoff Mass: 927.1 mT (2,044.0K lbm) Payload Capability: 25.5 mT (56.2K lbm) to LEO

Ares V

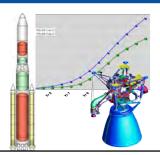
Saturn V

Height: 110.9 m (364 ft) Gross Liftoff Mass: 2,948.4 mT (6,500K lbm) Payload Capability: 44.9 mT (99K kbm) to TLI 118.8 mT (262K lbm) to LEO

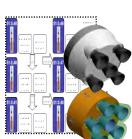

DAC 2 TR 6 LV 51.00.48

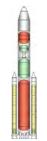
National Aeronautics and Space Administration

Ares V Element Heritage



ESAS to LCCR Major Events





Original ESAS Capability

- 45.0 mT Lander
- 20.0 mT CEVNo Loiter in LEO
- 8.4m OML
- 5 SSMEs / 2J2S

CY-06 Budget Trade to Increase

- Ares I / Ares V Commonality
- Ares I: 5 Seg RSRB
 / J2-X instead of Air-Start SSME
- Ares V: 1 J2-X

Detailed Cost Trade of SSME vs RS-68

- ~\$4.25B Life Cycle Cost Savings for
- 5 Engine Core
- Increased Commonality with Ares I Booster
- 30-95 Day LEO Loiter Assessed

IDAC 3 Trade Space

- Lunar Architecture Team 1/2 (LAT) Studies
- Mission Delta V's increased
- Increase Margins From TLI Only to Earth through TLI
- Loiter Penalties for 30 Day Orbit Quantified

EDS Diameter Change from 8.4m to 10m

- Lunar Architecture Team 1/2 (LAT) Studies
- Lunar /Mars
 Systems Benefits
- Tank Assembly Tooling Commonality

Incorporate Ares I Design Lessons Learned / Parameters

- Core Engine / SRB Trades to Increase Design Margins
- Increase Subsystem Mass Growth Allowance (MGA)

Recommended Option

- 6 Core Engines
- 5.5 Segment PBAN

Updated Capability

- 45.0t Lander
- 20.2t CEV
- ~6t Perf. Margin
- 4 Day LEO Loiter
- Ares I Common
 MGAs
- HTPB Decision End of FY09

320 Concepts Evaluated

730 Concepts
Evaluated

460 Concepts Evaluated

2005

2006

2007

200

>----

Ares I ATP

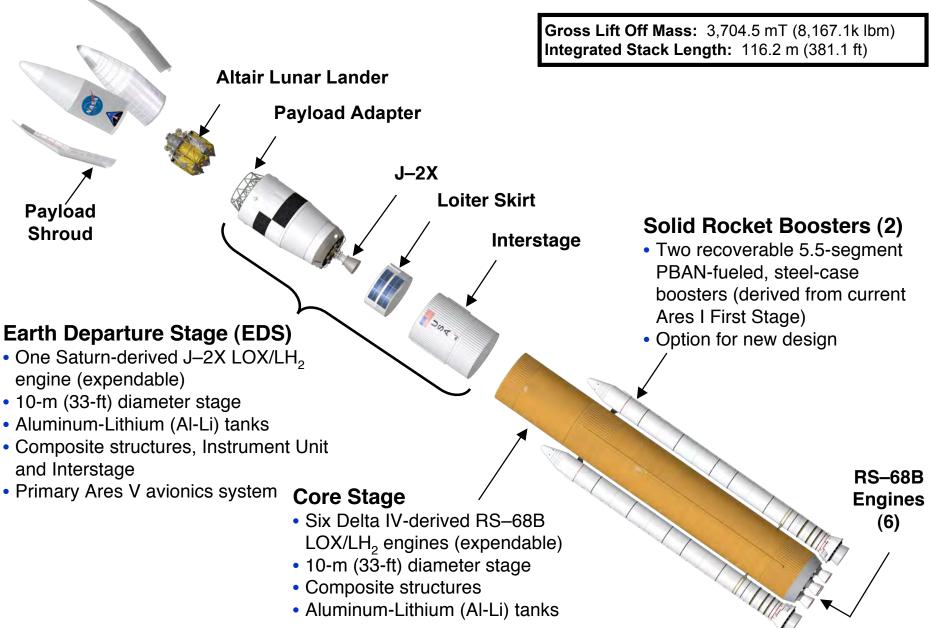
Orion ATP Ares I SRR

Orion SRR

Ares I SDR

Ares V MCR

ESAS Complete


National Aeronautics and Space Administration

Ares V Elements

New LCCR Point-of-Departure (51.0.48)

Ares V Technology Needs

Nose Cone/Forward Skirt

Loaded Motor

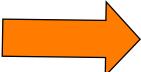
Ares Value Stream

	0.00	0.011.6	Areas
			<i>i</i> i o a o

Composites

Cryo Fluid Management

Solids


Automation

Liquid Propulsion

Control/Separation

Core Stage Aft Skirt

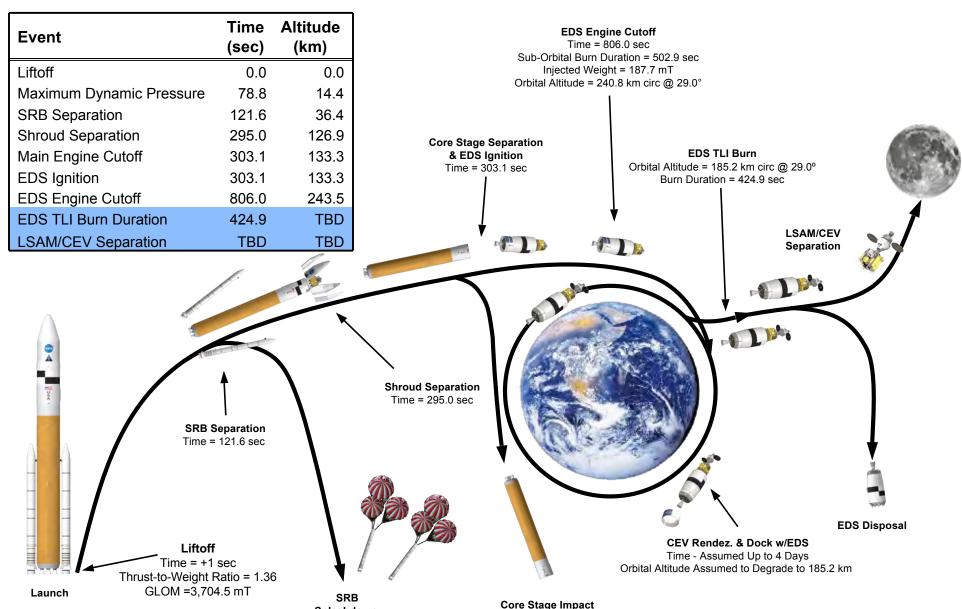
Point of Departure Shroud (Biconic)

ETDP Technology Prioritization Process (TPP)

Ares V Technology Priorities

- 1. Large Composite Manufacturing
- 2. HTPB Propellant
- 3. Long Term CFM
- 4. Composite Damage Tolerance/Detection
- 5. EDS State Determination & Abort
- 6. Composite Joining Technology
- 7. Liquid Level Measurement
- 8. Multi Layer Insulation
- 9. Leak Detection
- 10. Non Autoclave Composites
- 11. SRM Composite Metal Technology
- 12. Composite Dry Structure Development
- 13. Composite Damage Failure Detection for Abort
- 14. Nozzle Sensitivity to Pocketing (High Heat Flux from HTPB)
- 15. LH2 Tank Micro Cracking

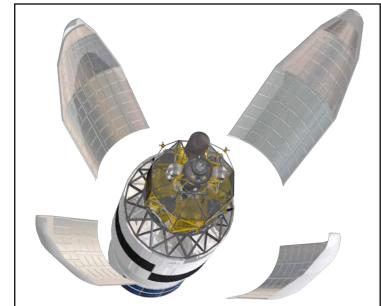
Ares V Summary Schedule

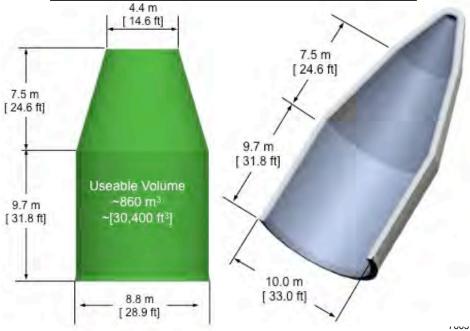

Ares V	FY09		2010	201		2012	2013		2014	2015	2016	2017	2018	2019	2020	
, 1100 V			_	FY11	FY	12	FY13	FY	14	FY15	FY16	FY17	FY18	FY19	FY20	
Level I/II Milestones		6-10	RR													
Altair Milestones (for reference only)				SRR			PDR			ĊI	DR V			DCR Altair 1 Altair 2	Altair 3 Altair 4	
Ares V Project Milestones		Phase	12-10	PR 6	3.12	R	;	PDI 3-14	R		CI 12-16	DR	Ares V-Y	er 7		
System Engineering and	STUDY	CoDR			DEFINIT	ION				DESIGN		DEVELO	PPMENT			
System Engineering and Integration		STUDY RAC 1	RAC	RAC 3	RAC 4	DAC 1								OPER	RATIONS	
Core Stage					F	R	PDR				CDR					
Core Stage Engine (RS-68B)						RR	PDR				CDR					
Booster						RR ▽	PDR				CDR					
Earth Departure Stage			8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			RR ▽	PDF				CDR					
Earth Departure Stage Engine			8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			RR	F	DR 7			CDR					
Payload Shroud						RR ▽	F	DR V	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		CDR					
Instrument Unit						F	RR 7	PDR			CDR	R				
Systems Testing			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							M	PTA CS MPTA V EDS V IGVT					7603.

Ares V Profile

51.00.48 Recommended POD (Lunar Sortie)

Splashdown




Payload Utilization

Ares V as a National Asset

- Ares V offers the largest payload capability than all other existing launch vehicles
- Over 40% more lift capability than Saturn V
- 3-5 times for volume than most other launch systems
- These unique capabilities open new worlds and create unmatched opportunities
- Human exploration
- Science
- **Space Business**
- Ares V is actively engaged with external organizations during this early concept phase to ensure its utilization for other missions
- **National Security**
- Astronomy and Solar System Science

Our Achievements

Programmatic Milestones

- Completed Ares I System Requirements Review (SRR) Jan 2007
- Awarded contracts for Ares I First Stage, J-2X Engine, Upper Stage and Instrument Unit
- Completed Ares I System Definition Review (SDR) Oct 2007
- Completed Ares V Mission Concept Review (MCR) Jun 2008
- Completed Constellation Lunar Capability Concept Review (LCCR) Jun 2008
- Released Ares V Request For Information (RFI) and evaluating responses Aug 2008
- Completion of Ares I Preliminary Design Review (PDR) Sep 2008

Technical Accomplishments

- Ares I Drogue Chute Drop Test July 2008
- Ares I First Stage Separation and Re-entry Wind Tunnel Tests
- J-2X Injector and Power Pack Tests
- A-3 Test Stand Construction for J-2X Engine at Stennis Space Center
- MSFC Dynamic Test Stand 4550 Refurbishment for Ares I and Ares V Integrated Vehicle Ground Vibration Testing
- Established Ares V Design Concept Which Fully Supports the Constellation Architecture

Summary

- Key elements of Ares V are under development as a part of Ares I and the Air Force RS-68
- ◆ Ares V Point of Departure (POD) vehicle has ~ 40% more payload capability than Saturn V which closes the lunar architecture with 6 MT of margin to Trans-Lunar Injection (TLI)
- Ares V concept design and development is underway
- Ares V completed its Mission Concept Review (MCR) in June of this year and is proceeding into Phase A
- Industry involvement in Ares V Phase I will support element definition to assure robust system level requirements
- After System Definition Review (SDR) timeframe Ares V element prime contract awards will begin Phase II

Backup

Payload Shroud Design Concept

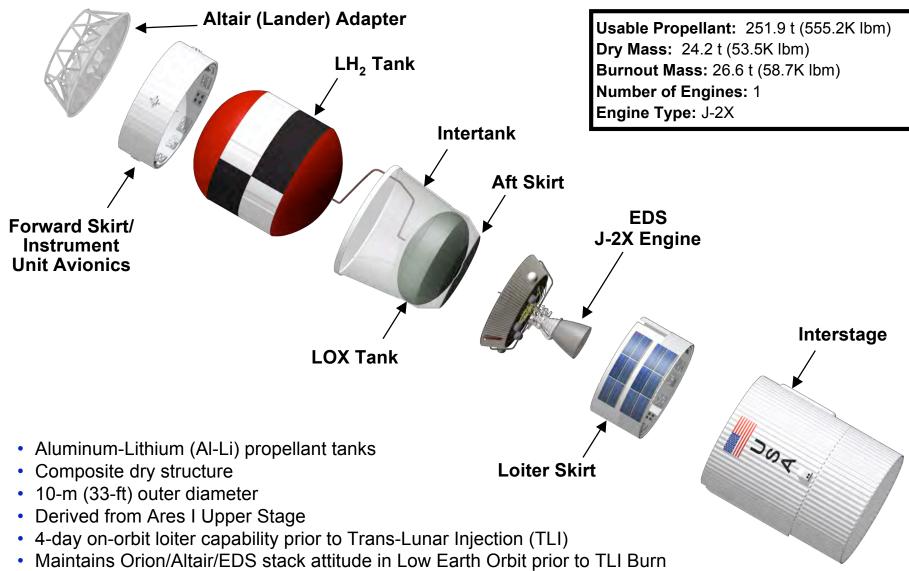
Point of Departure (Biconic)



- Composite sandwich construction (Carbon-Epoxy face sheets, Al honeycomb core)
- Painted cork TPS bonded to outer face sheet with RTV
- Payload access ports for maintenance, payload consumables and environmental control (while on ground)

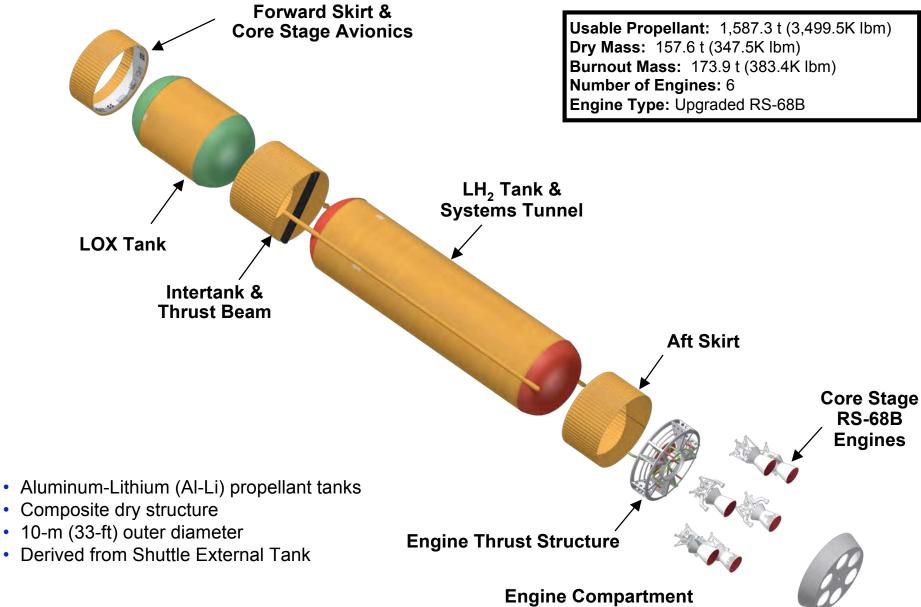
Mass: 9.1 t (20.0k lbm)
POD Geometry: Biconic
Design: Quad sector
Barrel Diameter: 10 m (33 ft)
Barrel Length: 9.7 m (32 ft)

Barrel Length: 9.7 m (32 ft) Total Length: 22 m (72 ft)


Thrust Rail Vertical Separation System Payload umbilical separation

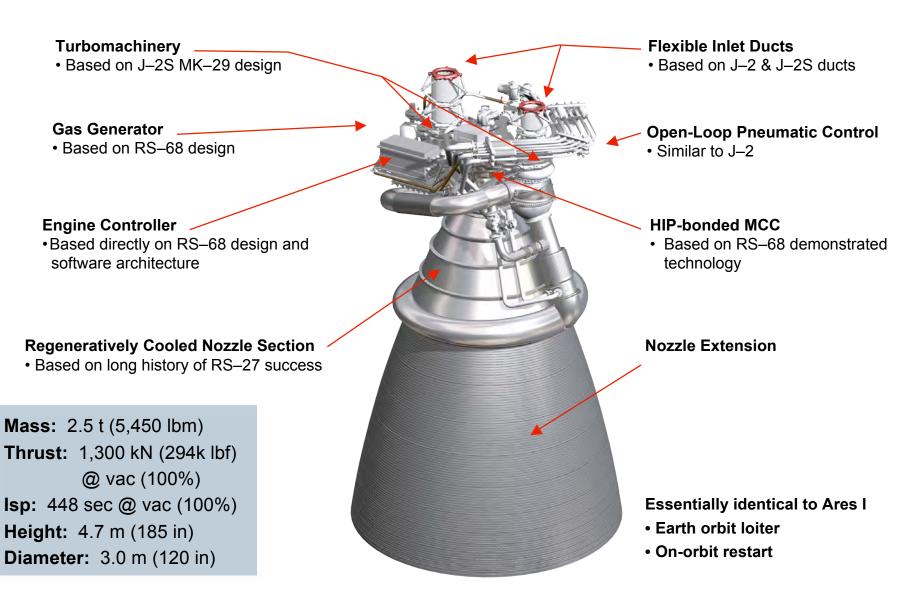
Earth Departure Stage Current Design Concept

Expanded View

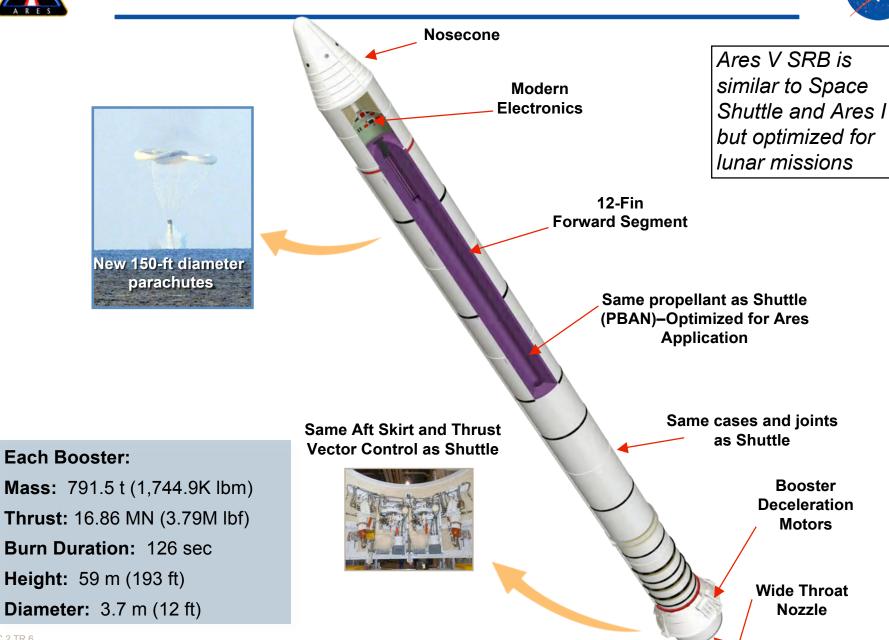

Provides 1.5 kW of power to Altair from launch to TLI

Core Stage Current Design Concept

- Expanded View -



Earth Departure Stage J-2X Engine



Ares V Solid Rocket Booster (SRB)

Core Stage Upgraded USAF RS-68B Engine

Redesigned turbine nozzles to increase maximum power level by ≈ 2%

Redesigned turbine seals to significantly reduce helium usage for pre-launch

Other RS-68A upgrades or changes that may be included:

- Bearing material change
- New Gas Generator igniter design
- Improved Oxidizer Turbo Pump temp sensor
- Improved hot gas sensor
- 2nd stage Fuel Turbo Pump blisk crack mitigation
- Cavitation suppression
- ECU parts upgrade

Helium spin-start duct redesign, along with start sequence modifications, to help minimize pre-ignition free hydrogen

Higher element
 density main injector
 improving specific
 impulse

Increased duration capability ablative nozzle

* RS-68A Upgrades